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Abstract
Spectral Kernel Networks (SKNs) emerge as a
promising approach in machine learning, meld-
ing solid theoretical foundations of spectral ker-
nels with the representation power of hierarchical
architectures. At its core, the spectral density
function plays a pivotal role by revealing essen-
tial patterns in data distributions, thereby offer-
ing deep insights into the underlying framework
in real-world tasks. Nevertheless, prevailing de-
signs of spectral density often overlook the intri-
cate interactions within data structures. This phe-
nomenon consequently neglects expanses of the
hypothesis space, thus curtailing the performance
of SKNs. This paper addresses the issues through
a novel approach, the Copula-Nested Spectral
Kernel Network (CokeNet). Concretely, we first
redefine the spectral density with the form of cop-
ulas to enhance the diversity of spectral densities.
Next, the specific expression of the copula mod-
ule is designed to allow the excavation of com-
plex dependence structures. Finally, the unified
kernel network is proposed by integrating the cor-
responding spectral kernel and the copula module.
Through rigorous theoretical analysis and experi-
mental verification, CokeNet demonstrates supe-
rior performance and significant advancements
over SOTA algorithms in the field.

1. Introduction
Kernel methods are an essential class of machine learning
approaches (Shawe-Taylor & Cristianini, 2004). However,
with the ever-growing scale of datasets in the machine learn-
ing community, the computation cost of kernel methods
significantly increases. To overcome these limitations, re-
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searchers have proposed several approaches to improve the
scalability of traditional kernels (Williams & Seeger, 2000;
Rahimi & Recht, 2007; Yang et al., 2014; Liu et al., 2021).
For instance, Random Fourier Features (RFF) (Rahimi &
Recht, 2007), as a widely adopted method, proposed an
explicit kernel mapping based on the spectral representation
of stationary kernels, which inspires many researchers to
delve deeper into the exploration of spectral kernels (Lázaro-
Gredilla et al., 2010; Wilson & Adams, 2013; Sinha &
Duchi, 2016). To further enhance the representation ability
of spectral kernels, some integrated them into the hierar-
chical architectures, resulting in spectral kernel networks
(SKNs) (Xue et al., 2019; Li et al., 2022; Xu et al., 2022),
which share the benefits of reduced computation cost along
with the improved capability of representation while main-
taining solid theoretical foundations.

In the SKNs, the spectral density serves as a crucial deter-
minant of their properties. It is refined through the back-
propagation procedure of the SKN, encapsulating the intrin-
sic characteristics in the data. However, the selection and
formulation of spectral density remain underexplored. Pre-
vious works prefer to utilize the spectral density function of
traditional kernels (Rahimi & Recht, 2007; Xue et al., 2019)
or assume the spectral density to be a linear combination of
Gaussian probability density functions (Wilson & Adams,
2013; Samo & Roberts, 2015; Remes et al., 2017). The
former is more akin to approximating an existing kernel,
rather than creating a novel data-based kernel. The latter
fails to investigate complex architectures between variables,
such as the dependence structures. Both of these methods
limit the exploration of the hypothesis space. To adjust the
spectral densities, Avron et al. related the spectral density
to an appropriately defined ridge leverage function (Avron
et al., 2017), but the modified spectral density can only be
used in the 1-dimensional Gaussian kernel. Li et al. em-
ployed the empirical ridge leverage score distribution and
proposed an algorithm to approximate the distribution and
the leverage weights (Li et al., 2019). However, the dis-
tribution is not learnable and hence unable to dynamically
mine the structure in the data. Xue and Wu derived a prior-
posterior bridge to strengthen the uncertainty of spectral
density (Xue & Wu, 2020), but the bridge is manually cho-
sen, reducing the flexibility in the parametric form of the
spectral density. The insufficient exploration of spectral den-
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sity prevents SKNs from fully demonstrating their inherent,
powerful data mining capabilities.

In this paper, we propose an expressive and flexible method
named Copula-Nested Spectral Kernel Network (CokeNet).
The core idea is to introduce copula networks into the de-
sign of the spectral density based on Sklar’s theorem. This
scheme can investigate a broader range of hypothesis space
of SKNs and capture the complicated relations between vari-
ables in the data. Concretely, we first redefine the spectral
density as a multiplication of copulas and pseudo prob-
ability density by employing Sklar’s theorem. Secondly,
we construct the copula module. Particularly, we select
the Archimedean copulas due to their simplicity and abil-
ity to model complex distributions. Berstein’s theorem is
then utilized to further enrich the choice of generators in
Archimedean copulas, which leads to a copula module in
hierarchical architectures. Finally, we insert the redefined
spectral density and the copula module into the spectral
kernel mapping, resulting in CokeNet. With the copula and
the kernel both in the representation of networks, we can
train the network in an end-to-end manner and flexibly fit
the network to the data, learning the spectral density most
suitable for the given task. Our contributions are:

• We propose a learnable copula-nested spectral kernel
network, CokeNet. By introducing the copula networks
into the construction of spectral kernels, the proposed
model can explore wider expanses of hypothesis spaces
and capture the complicated relations in the data, thus
deriving the most task-appropriate spectral density.

• We theoretically analyze the improvements of CokeNet.
This includes a broadening in the variety of spectral
densities, an enhanced capability for data structure
extraction and an augmented generalization ability.

• We conduct experiments on synthetic datasets and
real-world datasets to evaluate the effectiveness of our
method. The experimental results on the synthetic data
show that CokeNet can capture the dependence struc-
ture between data variables. Results of the real-world
experiments demonstrate the superiority of CokeNet
compared to state-of-the-art relevant methods.

2. Related Work
Spectral Kernel Based on Bochner’s theorem, Rahimi
and Recht proposed the RFF method based on the spec-
tral representation of stationary kernels (Rahimi & Recht,
2007). Its core idea is generating an explicit expression of
the kernel mapping to approximate the implicit mapping
of the target kernel, resulting in a succinct expression of
cosine functions. This work motivates many researchers to
further explore spectral kernels (Wilson & Adams, 2013;

Sinha & Duchi, 2016; Lázaro-Gredilla et al., 2010). Some
researchers generalized spectral kernels to non-stationary
scenarios. Remes et al. define spectral density as a com-
bination of bivariate Gaussian components and present a
family of non-stationary and non-monotonic kernels, which
can learn input-dependent and long-range covariance be-
tween inputs (Remes et al., 2017). Ton et al. obtain the
sparse spectrum kernel by solving a more general spectral
characterization of non-stationary kernels (Ton et al., 2018).
Samo and Roberts leverage Wiener’s Tauberian theorem
and Yaglom’s theorem to construct families of kernels that
can approximate arbitrarily well any bounded continuous
non-stationary kernels (Samo & Roberts, 2015). To further
enhance the representation ability of spectral kernels, ones
combine spectral kernels and various deep architectures,
resulting in SKNs (Xue et al., 2019; Li et al., 2022; Xu et al.,
2022). These methods have not only strong mathematical
guarantees of kernel methods but also the power to model
sophisticated data patterns brought by deep learning. Fur-
thermore, Xue et al. generalize the SKNs on the real number
domain to the complex number domain by taking both the
real and imaginary parts of the spectral kernel mapping into
account (Xue et al., 2023). Now, SKNs are not merely
a plug-in within kernel methods. Their improved integra-
bility and diverse architectures enable them to be used as
standalone learners.

Copula Theory Copula is a powerful statistical tool for
capturing the dependence structure between random vari-
ables, introduced by Sklar (Sklar, 1959). Along with the
introduction of the notion of copula, Sklar’s theorem points
out that any d-dimensional continuous joint distribution is
a product of d marginal distribution functions and a sin-
gle d-dimensional copula, which reduces the complex issue
of estimating the multivariate distribution to a much eas-
ier problem of estimating the univariate distribution and
their dependence structure. Hence, various copulas have
been developed and widely applied in fields where depen-
dence matters, such as economics (Oh & Patton, 2018),
biology (Disegna et al., 2017), medicine (Genest & Rivest,
1993) et al. However, the diversity of copula functions
brings the challenge of selecting or estimating a well-suited
and tractable copula. To tackle this issue, many copula gen-
erative models have been proposed (Ling et al., 2020; Ng
et al., 2021; Janke et al., 2021). These methods enhance
the ability to tailor copula functions to specific datasets,
enabling more precise modeling of complex dependencies.

3. Preliminary
In this section, we introduce some necessary concepts about
spectral kernels and copulas. Throughout the paper, the
vectors are denoted by bold letters (e.g. ω) while the scalars
are not (e.g. i).
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Figure 1. The overall structure of the CokeNet. First, we initial the weights according to the pseudo probability density function and pass
them to the Copula Module. Then, the copulas are passed into the spectral kernel mapping. Finally, the copula-nested spectral kernel
mapping makes each layer of CokeNet.

3.1. Spectral Kernel

According to Yaglom’s theorem (Yaglom, 1987), a non-
stationary kernel k(x,x′) is positive definite in Rd if and
only if it has the form

k(x,x′) =

∫
Rd×Rd

ei(ω
⊤x−ω′⊤x′)µ(dω, dω′), (1)

where µ(dω, dω′) is the Lebesgue-Stieltjes measure as-
sociated to some positive definite function p(ω,ω′) with
bounded variation. And they satisfy that µ(dω, dω′) =

p(ω,ω′)dωdω′. Hence, p(ω,ω′)∫
p(ω,ω)dωdω′ is a probability den-

sity function. Without loss of generality, we can assume
that

∫
p(ω,ω)dωdω′ < ∞ and p(ω,ω′) is a probability

density function. There exists a one-to-one correspondence
between k and p based on Fourier duality.

k(x,x′) =

∫
Rd×Rd

ei(ω
⊤x−ω′⊤x′)p(ω,ω′)dωdω′,

p(ω,ω′) =

∫
Rd×Rd

e−i(ω⊤x−ω′⊤x′)k(x,x′)dxdx′,

(2)

where p is the spectral density of the kernel and
x,x′,ω,ω′ ∈ Rd. Thereby, k is also called the spectral
kernel.

3.2. Copula

Copulas are powerful mathematical tools that fully depict
the dependence structure among random variables, offering

great flexibility in building multivariate models. They are
defined as

Definition 3.1. A function C : [0, 1]d → [0, 1] is a copula
if and only if the following properties hold

(i.) for every j ∈ {1, . . . , d}, C(u) = uj when all ele-
ments of u are equal to 1 with the exception of the j-th
one that is equal to uj ∈ [0, 1];

(ii.) C(u) ≤ C(v) for all u,v ∈ [0, 1]d,u ≤ v;

(iii.) C is d-increasing.

These properties guarantee copulas to be a special kind of
cumulative distribution function. Their corresponding prob-
ability density function, namely the copula density function
is defined as

c(u1, . . . , ud) =
∂C(u1, . . . , ud)

∂u1 . . . ∂ud
. (3)

4. CokeNet
In this section, we first provide the overall architecture of
our CokeNet of three parts. Subsequently, we introduce
each part in detail.

Overall Architecture CokeNet comprises three parts: the
redefinition of spectral density, the construction of copula
modules, and the copula-nested spectral kernel mapping.
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The overall architecture is shown in Figure 1. Concretely,
the spectral density is defined as

p(ω,ω′) = c(ω,ω′)p̂(ω,ω′), (4)

where c is the integrated copula module and p̂ represents
the pseudo sampling distribution for initialization. Then,
we obtain the copula module by representing a family of
Archimedean copulas C in a network form. Combining the
novel spectral kernel density p(ω,ω′) and copula module,
we derive the spectral kernel mapping Φ as one layer of
CokeNet. Stacking L layers of spectral kernel mapping, our
CokeNet is formulated as

CokeNet(x) = ΦL(. . .Φ2(Φ1(x))), (5)

where Φl is the copula-nested spectral kernel mapping in
l-th layer.

4.1. Copula-Nested Spectral Density

Theorem 4.1. (Sklar’s Theorem) (Jaworski et al., 2010) Let
F be a d-dimensional distribution function with univariate
margins F1, F2, . . . , Fd. Let Aj denote the range of Fj ,
Aj = Fj(R)(j = 1, 2 . . . , d). Then there exists a copula C
such that for all (x1, x2, . . . , xd) ∈ Rd,

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)),
(6)

where C is uniquely determined on A1 × A2 × . . . × Ad.
Hence, it is unique when F1, F2, . . . , Fd are all continuous.

By Sklar’s theorem, copulas serve as a link to build a joint
distribution with marginals. They depict the dependence
structure between margins. Furthermore, Corollary 4.2 ex-
plains how the copula density function connects probability
density functions.

Corollary 4.2. (Jaworski et al., 2010) Follow the notation
in Theorem 4.1. Let f be a d-dimensional probability density
function with univariate margins f1, f2, . . . , fd. Let Aj

denote the range of fj , Aj = fj(R)(j = 1, 2, . . . , d). Then
there exists a copula C such that for all (x1, . . . , xd) ∈ Rd,

f(x1, x2, . . . , xd) = c(F1(x1), . . . , Fd(xd))

d∏
k=1

fk(xk),

c(F1(x1), . . . , Fd(xd)) =
∂C(F1(x1), . . . , Fd(xd))

∂F1(x1) . . . ∂Fd(xd)
,

(7)

where c is the copula density function uniquely determined
on A1 × A2 × . . . × Ad. It satisfies that c is unique when
f1, f2, . . . , fd are all continuous.

Look back at Equation (2), by Corollary 4.2, we formulate

the spectral density function p as

p(ω,ω′) = c(ω,ω′)p̂(ω,ω′)

= c(P1(ω1) . . . , P
′
d(ω

′
d))

d∏
j=1

pj(ωj)p
′
j(ω

′
j),

(8)

where ωj , ω
′
j is the j-th element of the vector ω,ω′ ∈ Rd

respectively. pj and p′j are the corresponding probability
density functions. Pj and P ′

j are the corresponding cumu-
lative distribution functions. c is the copula density and p̂
is the pseudo probability density function. Note that when
c(ω,ω′) ≡ 1, the spectral density degenerates to the sce-
nario where each feature is independent of each other.

4.2. Copula Module
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Figure 2. The structure of copula module.

Motivated by ACNet (Ling et al., 2020), we select the family
of Archimedean copulas to link the marginal probability
density functions to a joint probability density function due
to its simple form and ability to model complex distributions.
The Archimedean copulas are given by

C(u1, . . . , ud) = ϕ(ϕ−1(u1)+ϕ−1(u2)+ . . .+ϕ−1(ud)),
(9)

where ϕ is the generator of C. And ϕ : [0,∞) → [0, 1] is
d-monotone, i.e. (−1)kϕ(k)(t) ≥ 0 for all k ≤ d, t ≥ 0.

From Equation (9), it can be seen that the generator ϕ deter-
mines the characteristics of Archimedean copulas. Hence,
an important problem is the selection of ϕ since there are so
many functions that satisfy the d-monotone constraint. If
we strengthen the condition in Equation (9) to require that
the generator is totally monotone, i.e. (−1)kϕ(k)(t) ≥ 0 for
all nonnegative integers k and all t ≥ 0. These functions
can be expressed in a unified form via Theorem 4.3.
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Theorem 4.3. (Berstein’s theorem) (Bernstein, 1929) A
function ϕ is totally monotone if and only if ϕ is the Laplace
transform of a positive random variable M , i.e. ϕ(t) =∫∞
0

e−Mtp(M)dM and P (M > 0) = 1.

Hence, by Berstein’s theorem and Monte Carlo approxima-
tion, the generator ϕ can be modified as

ϕ(t) =

∫ ∞

0

e−Mtp(M)dM = EM∼P (M)[e
−Mt]

≈ 1

T

T∑
k=1

exp(−Mkt),

(10)

where T is the number of samplings and Mk > 0. Since
the positive linear combination of monotone functions re-
mains monotone, we can derive a more general form of
Equation (10)

ϕ(t) =

T∑
k=1

Akexp(−Mkt), (11)

where Ak ≥ 0. It can be seen as a one-layer neural network
with exponential function as its activation function. We
name the network as the Copula Net. Note that ϕ can be
extended to deep architecture, but that is not the focus of
this paper. For more information, please refer to (Ling et al.,
2020).

Subsequently, by Equation (9), we generate copulas with
respect to the variables (ω,ω′) ∈ R2d

C(ω,ω′) =

T∑
k=1

Akexp(−Mk(

d∑
j=1

[ϕ−1(ωj) + ϕ−1(ω′
j)])),

(12)
where ωj , ωj is the j-th element of ω,ω′ respectively. ϕ is
defined in Equation (11). ϕ−1 is its inverse, which can be
calculated by numerical methods such as Newton’s method
and bisection method, i.e. by solving for t in ϕ(t)− ωi = 0.
We present a simple case in Figure 2, where t, t′ ∈ R are
scalars, t̂ = ϕ(t). All steps in the copula module theoret-
ically guarantee that Equation (12) is an efficient approx-
imation of copulas. Further, the derivatives of the copula,
namely the copula density function c, can be obtained by
automatic differentiation libraries such as PyTorch (Paszke
et al., 2019).

The copula is structured within the framework of a network
architecture instead of a conventional statistical format, of-
fering two significant advantages. Firstly, there is no need to
choose the generator manually. According to Theorem 4.3,
the exact parametric form of the generator relies on the
optimization of the approximation (Equation (10)) and the
selection of hyper-parameters in the copula network. This
significantly improves the flexibility in the architecture of
the generator, consequently enhancing the agility of the cop-
ulas. Secondly, using the expression of networks makes the

copula more task-oriented. Through gradient descent, Co-
keNet optimizes the parameters in the copula module so that
the consequent output is a reliable prediction. Therefore,
the copulas are formed in a most task-oriented way.

4.3. Copula-Nested Spectral Kernel Mapping

Using the novel spectral density in Equation (8) and our
elaborate copula density c, the spectral representation in
Equation (2) can be written as

k(x,x′) =

∫
Rd×Rd

ei(ω
⊤x−ω′⊤x′)c(ω,ω′)p̂(ω,ω′)dωdω′.

(13)

To loosen the symmetry restriction of spectral kernel k, we
rewrite Equation (13) as

k(x,x′) =

∫
Rd×Rd

τ(ω,ω′,x,x′)c(ω,ω′)p̂(ω,ω′)dωdω′,

(14)
where τ(ω,ω′,x,x′) is defined as

1

8
[ei(ω

⊤x−ω′⊤x′) + ei(ω
′⊤x−ω⊤x′)

+ ei(−ω⊤x+ω′⊤x
′
) + ei(−ω′⊤x+ω⊤x′)

+ ei(ω
⊤x−ω⊤x′) + ei(ω

′⊤x−ω′⊤x′)

+ ei(−ω⊤x+ω⊤x′) + ei(−ω′⊤x+ω′⊤x′)].

(15)

Applying Euler’s formula that eix = cos(x) + i sin(x), we
rewrite τ(ω,ω′,x,x′) as

1

4
[cos(ω⊤x− ω′⊤x′) + cos(ω′⊤x− ω⊤x′)

+ cos(ω⊤x− ω⊤x′) + cos(ω′⊤x− ω′⊤x′)].
(16)

We deem that (ω,ω′) follow the pseudo probability den-
sity function p̂. Following Monte Carlo approximation and
Equation (38), we have

k(x,x′) = E(ω,ω′)∼P̂ [τ(ω,ω′,x,x′)c(ω,ω′)]

≈ 1

D

D∑
m=1

τ(ωm,ω′
m,x,x′)c(ωm,ω′

m)

= Ψ(x)⊤Ψ(x′),

(17)

where

Ψ(x) =
1√
4D


cos(ω⊤

1 x) + cos(ω
′⊤
1 x)

. . .

cos(ω⊤
Dx) + cos(ω

′⊤
D x)

sin(ω⊤
1 x) + sin(ω

′⊤
1 x)

. . .

sin(ω⊤
Dx) + sin(ω

′⊤
D x)

 ·


c(ω1,ω

′
1)

. . .
c(ωD,ω′

D)
c(ω1,ω

′
1)

. . .
c(ωD,ω′

D)

 .

(18)
D is the number of random features, and (ωi,ω

′
i) ∼ P̂ are

the weights sampled in the i-th random feature.
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Further, we replace Ψ with Φ, given by

Φ(x) =
1√
2D

cos(ω⊤
1 x) + cos(ω

′⊤
1 x)

. . .

cos(ω⊤
Dx) + cos(ω

′⊤
D x)

 ·

 c(ω1,ω
′
1)

. . .
c(ωD,ω′

D)

 ,

(19)

since E[Φ⊤(x)Φ(x′)] = E[Ψ⊤(x)Ψ(x′)]. The explicit
mapping defined by Equation (19) enables the kernel to be
regarded as a neural network with cosine function as its
activation function. Its parameters can be updated via algo-
rithms such as gradient descent. Furthermore, the CokeNet
is formulated as

CokeNet(x) = ΦL(ΦL−1(. . .Φ2(Φ1(x))), (20)

where Φl identifies the mapping of the l-th layer. The corre-
sponding Copula-nested spectral kernel (Coke) is

k̂(x,x′) = ⟨ΦL(. . . (Φ1(x)),ΦL(. . . (Φ1(x′))⟩. (21)

5. Analysis
By incorporating copulas into SKNs, our proposed model
has great improvements in its representation and flexibility.
The explicit description of dependence between variables
enhances the diversity of the spectral densities which makes
it more convenient for users to add prior information about
the data. Further, integrating copulas strengthens the gener-
alization of the model. We discuss the advantages in detail.

5.1. The Diversity and Uncertainty of Spectral Densities

We theoretically explain the capacity of CokeNet to increase
the uncertainty of spectral densities via 1) the entropy of
the weights and 2) the Wigner distribution of the copula-
nested spectral kernel. Furthermore, we illustrate that this
improvement makes CokeNet fall into local minima less
easily compared to plain SKN.

1) The entropy of the spectral density function. Equa-
tion (19) indicates that the spectral density, including
the pseudo probability density function p̂ as well as the
copula module, determines the parameter space of Co-
keNet, ΘCokeNet = {(Θc,ωi,ω

′
i)|(ωi,ω

′
i) ∼ P̂ ,ωi,ω

′
i ∈

Rd,Θc are parameters in copula module}. Similarly, the
parameter space of the SKN without copulas is ΘSKN =
{(ωi,ω

′
i)|(ωi,ω

′
i) ∼ P,ωi,ω

′
i ∈ Rd}. Therefore, the

design of spectral densities strongly influences the perfor-
mance of SKNs.

In previous works, the spectral density p is either the one-
to-one corresponding spectral density (defined in Equation
(2)) of traditional kernels or a mixture of Gaussian compo-
nents, leading to the following disadvantages: firstly, using
spectral densities of existing kernels is similar to kernel
approximation rather than kernel designing. Secondly, em-
pirically choosing Gaussian components limits the selection

of spectral kernels. In practice, many functions satisfying
the condition described in Equation (2) are not taken into
scope during the construction of spectral densities, which
leaves a large part of the hypothesis space unexplored. Fur-
thermore, the preconceived assumption may not be most
task-appropriate and hinder the optimization process. The
dependence structure of the weights is neglected under this
assumption.

Therefore, we consider incorporating copulas in the con-
struction of spectral densities, which improves the diversity
and uncertainty of spectral densities and depicts dependence
relations. We demonstrate this improvement via the entropy
of the weights (ω,ω′). By Equation (8), we know that
(ω,ω′) ∼ p(ω,ω′) = c(ω,ω′)p̂(ω,ω′), so the entropy is
defined and formulated as

H
(ω,ω′)∼P

(ω,ω′) = −
∫

p(ω,ω′)log(p(ω,ω′))dωdω′

= H
(ω,ω′)∼C

(ω,ω′) + H
(ω,ω′)∼P̂

(ω,ω′).

(22)

It is trivial that the entropy of the weights is determined
by the marginal distribution of each weight and the cop-
ula function. When the copula functions vary dynamically
according to the weights, they increase the entropy of the
weights, which indicates the enhancement of the diversity
and uncertainty in spectral densities. Hence, by involving
copulas in the construction of spectral densities, sampled
weights in CokeNet contain more information, and the pa-
rameter space is enriched.

2) Wigner distribution of the copula-nested spectral ker-
nel. Wigner transform (Flandrin, 1998) is a mathematical
tool in time-frequency analysis, demonstrating the relation
between input and frequency. The Wigner distribution func-
tion of a kernel k is defined as Wk : Rd × Rd → R

Wk(x,ω) =

∫
Rd

k(x+
τ

2
, x− τ

2
)e−2iπω⊤τdτ . (23)

Note that when the kernel is stationary, the Wigner distri-
bution function reduces to the spectral density. It reveals
the frequency structure of the kernel and provides insight
into the properties of the spectral density. We demonstrate
the Wigner distribution of Coke and plain spectral kernel
in Figure 3 and leave the detailed formula derivation and
explanation in the appendix. In brief, both Coke and plain
spectral kernel imply several sinusoidal signals. But given
a fixed input x, the Wigner distribution of Coke exhibits a
clear value change with frequency w (denoted in the color
change in the figure), yet this variation is not apparent on the
plain spectral kernel. This indicates that the copula-nested
spectral density exhibits higher diversity.
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(a) Coke (b) Plain Spectral Kernel

Figure 3. The Wigner distribution of Coke(a) and SK(b).

3) CokeNet falls into local minima less easily compared
to plain SKN. A wider parameter space as well as the
hypothesis space enables the model to explore deeper. It can
prevent the model from local minima. Figure 4 demonstrates
the changes of loss surface according to parameters in an
experiment described in Section 6.1. The loss surface of the
SKN is rougher and fluctuates more with multiple minima.
While there is only one minimum in the loss surface of
CokeNet. It indicates that the proposed model is less likely
to fall into the local minima during optimization.

(a) SKN (b) CokeNet

Figure 4. The loss surface of the SKN (a) and CokeNet (b).

5.2. Description of Dependence Structures

Equation (22) shows that copulas bring extra information
into the spectral densities. By further analyzing the increase
in entropy brought by copulas, we obtain that

H
(ω,ω′)∼C

(ω,ω′) = −KL(p(ω,ω′)||p̂(ω,ω′)). (24)

The entropy of c indicates the Kullback-Leibler divergence
of using p̂ to approximate p. The difference between p and
p̂ is the dependence structure between variables. Thus, the
extra information indicated by Equation (22) is the inter-
nal dependence of weights, verifying its capacity to tackle
complicated relations between variables.

From another perspective, since the interactions between
variables are explicitly described by copulas, we can in-
corporate reliable prior information into the construction
of models via the copula module. For instance, when the

data appear to be Gaussian, the pseudo probability density
functions can be set to be Gaussian components, and the
copula module is set to be a constant. While the data appear
to have tail dependence, it is hard to tackle by Gaussian
components. We can use the Clayton copula to pre-train the
copula module, which exhibits tail dependencies to describe
the interaction. The involved prior information can guide the
learning process and lead to a better alignment between the
model and existing patterns, enhancing the interpretability.

5.3. The Generalization Ability

The integration of copulas improves the generalization of
SKNs. We show its improvements via the following theo-
rems. Define the empirical Rademacher complexity.

Definition 5.1. The empirical Rademacher complexity of
F = {f |f is a binary classifier} is defined as

R̂(F) = Eσ[ sup
f∈F

(
1

N

N∑
i=1

σif(xi))], (25)

where σ1, . . . , σm are independent random variables uni-
formly chosen from {−1,+1} and {xi}Ni=1 is the dataset.

By Equation (19), the reproducing kernel Hilbert space
(RKHS) of CokeNet is

G = {Φ(·)|ωm,ω′
m ∈ Rd,Θc}, (26)

where Θc are the parameters in the copula modules.

Note that the plain spectral kernel mapping is

Φ̃(x) =
1√
2D

cos(ω⊤
1 x) + cos(ω

′⊤
1 x)

. . .

cos(ω⊤
Dx) + cos(ω

′⊤
D x)

 . (27)

And its RKHS is defined as

G̃ = {Φ̃(·)|ωm,ω′
m ∈ Rd}. (28)

We have the following theorem considering the empirical
Rademacher complexities of these hypothesis spaces.
Theorem 5.2. Following the notation in Equation (19) and
Equation (27) and considering a dataset {(xi, yi)}Ni=1, the
empirical Rademacher complexity of G is bounded by

R̂(G) ≤ 1

N
[

N∑
i=1

D∑
m=1

2c2(ωm,ω′
m)[1+cos((ωm−ω′

m)⊤xi)]]
1/2.

(29)
The empirical Rademacher complexity of G̃ is bounded by

R̂(G̃) ≤ 1

N
[

N∑
i=1

D∑
m=1

2[1 + cos((ωm − ω′
m)⊤xi)]]

1/2.

(30)

Proof. The proof is given in the Appendix.
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Theorem 5.3. (Shalev-Shwartz & Ben-David, 2014) Given
the datasets {(xi, yi)}Ni=1 and the hypothesis space H, as-
sume the loss function ℓ is l-Lipstchitz and ℓ(·) < ∞. With
probability at least 1− δ, the following risk bound holds

ϵ(f∗)− ϵ̂(f) ≤ 2lR̂(H) +O(

√
log(1/δ)

N
), (31)

where f ∈ H and f∗ ∈ H is the most accurate estimator
in the hypothesis space. ϵ denotes the expected risk and ϵ̂
denotes the empirical risk.

By Theorem 5.2 and Theorem 5.3, we can guarantee that
the proposed model has better generalization ability by con-
straining that ||c2(ω,ω′)|| ≤ 1, which can be done by
adding a regularizer to the loss function

ℓ(y, ŷ) = loss(y, ŷ) + λ(1− ||c2(ω,ω′)||), (32)

where λ is the regularization parameter. ŷ is the prediction
and y is the groundtruth.

6. Experiment
In this section, systematical experiments are performed to
evaluate our proposed CokeNet. We first empirically demon-
strate the efficacy of CokeNet in depicting relations between
variables in the synthetic data. Then, we evaluate the perfor-
mance of CokeNet compared with several state-of-the-art
algorithms on six real-world datasets. All the experiments
are implemented with PyTorch (Paszke et al., 2019).

6.1. Synthetic Data

To verify the capacity to capture the dependence structures
between variables of CokeNet, we elaborate a series of
synthetic data and conduct comparison experiments and
ablation experiments.

(a) 0.1 (b) 0.5 (c) 0.9

Figure 5. Data points of different dependence degrees. The depen-
dence degrees of blue points are all 0 while the dependence degree
of red points is 0.1 in (a), 0.5 in (b) and 0.9 in (c). Note that with
an increase in the degree of dependence, the mixing of differently
colored points becomes less distinct, thereby simplifying the clas-
sification task.

Table 1. Classification accuracy of synthetic data. The best results
are highlighted in bold. And DD stands for dependence degree.

DD SKN COKENET COKENET-P COKENET-R

0.01 0.5616 0.5800 0.5250 0.5383
0.1 0.5366 0.5616 0.5516 0.5300
0.3 0.5433 0.5750 0.5483 0.5300
0.5 0.5916 0.5950 0.5816 0.5750
0.7 0.6516 0.6600 0.6583 0.6400
0.9 0.7616 0.7650 0.7566 0.7583

0.999 0.9700 0.9750 0.9750 0.9716

Data We generate 7 pairs of 2-dimensional synthetic
data points with different degrees of dependences. Each
pair contains two groups of data points: one is a group
of individually independent data points sampled from
N (0, 1) and the other is a group of data points sampled

from N (0,Σ), where the Σ =

[
1 α
α 1

]
. The α, re-

garded as the dependence degree of each pair, is set to be
0.1, 0.3, 0.5, 0.7, 0.9, 0.01, 0.999 in each pair respectively.
Then a binary classification task is conducted in each pair.
We illustrate three pairs of synthetic data points (dependence
degree:0.1, 0.5 and 0.9) in Figure 5 to show the complex-
ity of the task associated with the dependence degree. In
Figure 5(a), the red and blue points are intermixed with no
clear separation or pattern. In Figure 5(b), it starts to show
that the variables of red points are linearly correlated. While
in Figure 5(c), the dependence relation is very obvious. As
the dependence degree increases from Figure 5(a) to Fig-
ure 5(c), the complexity and challenge of the classification
task simultaneously drops.

Compared Methods We compared the performances of
(1) our method (CokeNet), (2) plain spectral kernel network
without copulas (SKN), and several variants of our method:
(3) CokeNet-P: replace the copula module c(ω,ω′) with
parameters of the same dimension but with no dependence
with ω, (4) CokeNet-R: change the copula network to a
neural network with ReLU function as its activation function.
The architectures of all networks are set to be 2× 4× 4× 2,
with a softmax function at the end for classification.

Results Table 1 represents the results of all 7 pairs. The
best results are highlighted in bold. The performance of all
models improves with the increase in dependence degree,
which is associated with the decrease in task complexity.
CokeNet consistently leads across almost all tasks. The per-
formance gap between CokeNet and other methods is more
obvious at lower dependence degrees, which suggests the ef-
fectiveness of CokeNet in dealing with dependent data even
when the dependence structure is nontrivial. The ablation
experiment between CokeNet, CokeNet-R and CokeNet-P
indicates that adding arbitrary parameters to the SKN cannot
effectively capture the complex dependent relations.
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Table 2. Classification accuracy in real-world datasets. The best results are highlighted in bold.

DSKN ASKL CosNet GRFF SRFF CokeNet-P CokeNet-R CokeNet

DistalPhalanxOutlineCorrect 0.7789 0.7608 0.7717 0.6131 0.7754 0.7282 0.7355 0.8007
Earthquakes 0.7482 0.6762 0.6043 0.7482 0.6763 0.7482 0.7482 0.7553

HandOutlines 0.9081 0.8378 0.8838 0.6459 0.9108 0.9081 0.9054 0.9135
DistalPhalanxTW 0.6474 0.6474 0.6043 0.6331 0.6331 0.6187 0.6402 0.6618

ProximalPhalanxOutlineCorrect 0.8797 0.8659 0.8729 0.6838 0.8866 0.9037 0.9003 0.9072
ProximalPhalanxTW 0.7804 0.8048 0.8049 0.7854 0.7805 0.7951 0.7707 0.8146

6.2. Real-World Data

To demonstrate the efficacy of CokeNet, we conduct compar-
ison and ablation experiments in several real-world datasets.
Datasets We systematically evaluate the performance
of CokeNet on six standard classification tasks from UCI
repository (Blake, 1998).

Compared Methods We compare the proposal with
several mainstream spectral kernel methods, as follows:
DSKN (Xue et al., 2019): Deep Spectral Kernel Network
which embedded non-stationary spectral kernel into deep
architectures; ASKL (Li et al., 2020): Automated Spectral
Kernel Learning which incorporates the process of finding
suitable kernels and model training in a learning framework;
CosNet (Xue et al., 2023): Complex-valued spectral kernel
network, which generalizes spectral kernel mapping in real
number domain to complex number domain; GRFF (Fang
et al., 2023): Generative Random Fourier Features, a one-
stage kernel learning approach that models some latent dis-
tribution of the kernel via a generative network based on
the random Fourier features; SRFF (Zhang et al., 2017):
Stacked kernel network that learns a hierarchy of RKHS
functions via random Fourier feature representation.

Implementation Details Following the common practice,
Gaussian probability density function is set to be the spec-
tral density of all kernel methods. We denote the number
of features in the dataset as nfeature, the number of classes
as nclasses. The scale of all networks is uniformly set to
nfeature ×512×256×nclasses. The architecture of the neural
network, with ReLU functions as its activation function in
CokeNet-R, is set to be as same as the copula net. Detailed
information about the setting in each dataset is in the Ap-
pendix. All method is trained by ADAM (Kingma & Ba,
2015) using mean squared error (MSE) loss. The learning
rate is 0.001 without weight decay. Accuracy is the mea-
surement. Table 2 demonstrates the results of real-world
datasets. The best results are highlighted in bold.

Results Overall, CokeNet consistently outperforms other
models across all datasets. GRFF exhibits varied perfor-
mances because of its progressive training strategy. In the
backpropagation on a single batch, this scheme first only
updates the last layer and the corresponding generator. Then
parameters are added to the training sequence layer by layer,

starting from the penultimate layer. Updating parameters
multiple times during a single backpropagation process in-
curs unnecessary disturbances. The ablation studies between
CokeNet, CokeNet-R and CokeNet-P indicate the efficacy
of adding copula modules compared to arbitrary param-
eters and arbitrary neural networks. Additionally, while
CokeNet-R has a lot more parameters than CokeNet-P, the
performances of CokeNet-R are not always better. This
suggests that merely making the architectures of the copula
complicated does not guarantee better performance.

7. Conclusion
In this paper, we propose CokeNet, a copula-nested spec-
tral kernel network. In CokeNet, we first redefine spectral
densities in the form of copulas. Secondly, we generalize
Archimedean copulas to a hierarchical architecture and form
the copula module. Subsequently, copula-nested spectral
kernel mapping is obtained by integrating the copula mod-
ule into the novel spectral density. CokeNet significantly
expands the diversity of the hypothesis space and allows for
an excavation of the complex dependencies inherent in data
variables, overcoming the limitations posed by traditional
spectral kernel networks. Theoretical analysis verifies the
increase in the uncertainty of spectral densities, an improved
data description capacity and a better generalization ability.
The experimental results affirm the superiority of CokeNet
over relevant state-of-the-art algorithms.
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Appendix
In the Appendix, we provide:

• Detailed derivation of equations and theorems.

• The Wigner distribution functions of kernels.

• Loss surface of SKN and CokeNet in the experiments described in Section 6.1.

• Extensive experiments.

• Additional information about the real-world classification experiments.

A. The Detailed Derivation of Equation (22)

The entropy of weights (ω,ω′) is defined as

H
(ω,ω′)∼P

(ω,ω′) = −
∫

p(ω,ω′)log(p(ω,ω′))dωdω′, (33)

where (ω,ω′) ∼ P . We define the joint probability density function of (ω,ω′) as c(ω,ω′)p̂(ω,ω′) and p̂(ω,ω′) =
p(ω)p(ω′) is the product of the marginal probability density of ω and ω′.

Therefore, Equation (33) can be written as

H
(ω,ω′)∼P

(ω,ω′) = −
∫

p(ω,ω′)log(p(ω,ω′))dωdω′

= −
∫

c(ω,ω′)p̂(ω,ω′)[log(c(ω,ω′)) + log(p̂(ω,ω′))]dωdω′

= −
∫

c(ω,ω′)log(c(ω,ω′))dωdω′ −
∫

p̂(ω,ω′)log(p̂(ω,ω′))dωdω′

= H
(ω,ω′)∼C

(ω,ω′) + H
(ω,ω′)∼P

(ω,ω′).

(34)

B. The Detailed Derivation of Equation (24)

Given that p(ω,ω′) = c(ω,ω′)p̂(ω,ω′), we have

KL(p(ω,ω′)||p̂((ω,ω′)) =

∫
p(ω,ω′)log(

p(ω,ω′)

p̂(ω,ω′)
)dωdω′

=

∫
c(ω,ω′)p̂(ω,ω′)log(c(ω,ω′))dωdω′

=

∫
c(ω,ω′)log(c(ω,ω′))dωdω′

= − H
(ω,ω′)∼C

(ω,ω′).

(35)

C. The Wigner Distribution of Kernels.
Recall that the Wigner distribution function of a kernel k is defined as Wk : Rd × Rd → R

Wk(x,ω) =

∫
Rd

k(x+
τ

2
, x− τ

2
)e−2iπω⊤τdτ . (36)

And the copula-nested spectral kernel can be written as

k(x,x′) = E(ω,ω′)∼P̂ [τ(ω,ω′,x,x′)c(ω,ω′)] ≈ 1

D

D∑
m=1

τ(ωm,ω′
m,x,x′)c(ωm,ω′

m), (37)
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where τ(ω,ω′,x,x′) is

1

4
[cos(ω⊤x− ω′⊤x′) + cos(ω′⊤x− ω⊤x′) + cos(ω⊤x− ω⊤x′) + cos(ω′⊤x− ω′⊤x′)]. (38)

By inserting Equation (37) into Equation (36), and set Am = ωm − ωm, Bm = ωm+ωm

2 , Wk(x,ω) of Coke is

1

D

D∑
m=1

∫
Rd

τ(ωm,ω′
m,x+

τ

2
,x− τ

2
)c(ωm,ω′

m)e−2iπω⊤τdτ

=
1

4D

D∑
m=1

∫
Rd

[cos(A⊤
mx+B⊤

mτ ) + cos(−A⊤
mx+B⊤

mτ ) + cos(ω⊤
mτ ) + cos(ω′⊤

m τ )]c(ωm,ω′
m)e−2iπω⊤τdτ

=
1

4D

D∑
m=1

c(ωm,ω′
m)

∫
Rd

[cos(A⊤
mx+B⊤

mτ ) + cos(−A⊤
mx+B⊤

mτ ) + cos(ω⊤
mτ ) + cos(ω′⊤

m τ )]e−2iπω⊤τdτ .

(39)
For simplicity of understanding, we break down the calculation of the integral into four parts. By Euler’s formula, the
calculation of the first part

∫
Rd cos(A

⊤
mx+B⊤

mτ )e−2iπω⊤τdτ is as follows

1

2

∫
Rd

[ei(A
⊤
mx+B⊤

mτ ) + e−i(A⊤
mx+B⊤

mτ )]e−2iπω⊤τdτ

=
1

2
[

∫
Rd

ei(A
⊤
mx+B⊤

mτ )e−2iπω⊤τdτ +

∫
Rd

e−i(A⊤
mx+B⊤

mτ )]e−2iπω⊤τdτ ]

=
1

2
[eiA

⊤
mx

∫
Rd

ei(Bm−2πω)⊤τdτ + e−iA⊤
mx

∫
Rd

e−i(Bm+2πω)⊤τdτ ]

=
1

2
(2π)d[eiA

⊤
mxδ(Bm − 2πω) + e−iA⊤

mxδ(Bm + 2πω)],

(40)

where δ(·) is the dirac delta function. Similarly, that of the second part is the same. And we can obtain the integral of the
third part is

1

2
(2π)d[δ(ωm − 2πω) + δ(ωm + 2πω)]. (41)

While that of the fourth part is
1

2
(2π)d[δ(ω′

m − 2πω) + δ(ω′
m + 2πω). (42)

Combining these four parts together, we obtain the Wigner distribution of the Coke

(2π)d

8D

D∑
m=1

c(ωm,ω′
m)[2eiA

⊤
mxδ(Bm − 2πω) + 2e−iA⊤

mxδ(Bm + 2πω)

+ δ(ωm − 2πω) + δ(ωm + 2πω) + δ(ω′
m − 2πω) + δ(ω′

m + 2πω)].

(43)

And we can obtain the Wigner distribution of plain spectral kernel by setting c(ωm,ω′
m) ≡ 1.

In terms of the figures in Figure 3, for the simplicity of visualization, we consider the simple scenario where d = 1, i.e.
ωm, ω′

m, Am, Bm ∈ R. And set x = ai, a ∈ R, i is the imaginary unit.

D. Loss Surface
In Figure 4, we demonstrate the change of loss according to parameters in the experiment in Section 6.1. Here we represent
the loss surface of CokeNet and SKN on the 7 pairs of synthetic data. Note that the figures in Figure 4 are the results of the
dependence degree 0.1.
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Figure 6. Loss surface of CokeNet on synthetic data of different dependence degrees.

(a) 0.01 (b) 0.1 (c) 0.3 (d) 0.5 (e) 0.7 (f) 0.9 (g) 0.999

Figure 7. Loss surface of SKN on synthetic data of different dependence degrees.

E. Extensive Experiments
To further verify the superiority of CokeNet, we conduct regression tasks on several UCI datasets and an image classification
task on the CIAFR10 datasets compared to some relevant algorithms. The results are represented in the following tables.

Table 3. The MSE loss of DSKN, CokeNet, CosNet, SRFF on several regression datasets. The best results are highlighted in bold.

Dataset DSKN CokeNet CosNet SRFF

power 0.4812 0.1004 0.1021 0.1009
concrete 0.8803 0.7977 0.8891 0.8924

yacht 1.9578 1.6857 2.3417 2.1974
airfoil 0.1128 0.0980 0.1070 0.4986
boston 0.4938 0.4492 0.5476 0.7136

wine red 0.6058 0.5967 0.6560 0.6423
wine white 0.7598 0.7476 0.7525 0.8347

Table 4. The accuracy of DSKN, CokeNet, CosNet, SRFF on CIFAR10. The best results are highlighted in bold.

Dataset DSKN CokeNet CosNet SRFF

Accuracy 0.8148 0.8172 0.6631 0.7359

F. Proof of Theorem 5.2
Theorem F.1. Following the notation in Equation (27) and Equation (19) and considering a dataset {(xi, yi)}Ni=1, the
empirical Rademacher complexity of G is bounded by

R̂(G) ≤ 1

N
[

N∑
i=1

D∑
m=1

2c2(ωm,ω′
m)[1 + cos((ωm − ω′

m)⊤xi)]
1/2. (44)

The empirical Rademacher complexity of G̃ is bounded by

R̂(G̃) ≤ 1

N
[

N∑
i=1

D∑
m=1

2[1 + cos((ωm − ω′
m)⊤xi)]

1/2. (45)
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Proof. Following the same notation as above and the definition of empirical Rademacher complexity (Equation (25)), we
obtain that

R̂(G) = Eσ[sup
Φ∈G

(
1

N

N∑
i=1

σiΦ(xi))] ≤
1

N
Eσ[sup

Φ∈G
(||

N∑
i=1

σiΦ(xi))||]. (46)

Since ||
∑N

i=1 σiΦ(xi))||2 =
∑N

i=1

∑N
j=1 σiσjΦ

⊤(xi)Φ(xj), we have

R̂(G) ≤ 1

N
Eσ[sup

Φ∈G
(

N∑
i=1

N∑
j=1

σiσjΦ
⊤(xi)Φ(xj))

1/2] =
1

N
sup
Φ∈G

(

N∑
i=1

Φ⊤(xi)Φ(xi))
1/2. (47)

Next, we use Equation (18), which is equivalent to Equation (19),

Φ⊤(x)Φ(x) =

D∑
m=1

c2(ωm,ω′
m)[(cos(ω⊤

mx) + cos(ω
′⊤
m x))2 + (sin(ω⊤

mx) + sin(ω
′⊤
m x))2]

=

D∑
m=1

2c2(ωm,ω′
m)[1 + cos((ωm − ω′

m)⊤x)].

(48)

Insert Equation (48) into Equation (47), we obtain that

R̂(G) ≤ 1

N
[

N∑
i=1

D∑
m=1

2c2(ωm,ω′
m)[1 + cos((ωm − ω′

m)⊤xi)]]
1/2. (49)

By setting c(ω,ω′) = 1, we obtain the bound for the plain non-stationary spectral kernel.

G. Additional Information of Real-World Classification Experiments

Table 5. Detailed information about the real-world experiments

Dataset Type Input.Dim Train.Num Test.Num Classes

DistalPhalanxOutlineCorrect Image 80 400 139 3
Earthquakes Sensor 512 322 139 2

HandOutlines Image 2709 1000 370 2
DistalPhalanxTW Image 80 400 139 6

ProximalPhalanxOutlineCorrect Image 80 600 291 2
ProximalPhalanxTW Image 80 400 205 6

Table 6. Architecture of networks in each dataset.

Dataset Architecture

DistalPhalanxOutlineCorrect 80× 512× 256× 3
Earthquakes 512× 512× 256× 2

HandOutlines 2709× 512× 256× 2
DistalPhalanxTW 80× 512× 256× 6

ProximalPhalanxOutlineCorrect 80× 512× 256× 2
ProximalPhalanxTW 80× 512× 256× 6
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